Geo Data Mining and Knowledge Discovery

Monica Wachowicz
Technical University of Madrid
ISTI, CNR

Chiara Renso KDDLab,

Introduction

Geo Data Mining

How we can explore millions of records, hundreds of fields, and find patterns in spatial databases?

Are nate:

tools !!!!

BUT

several barriers
to apply them to
georeferenced
data

What is special about geo data mining? • the need for spatial data

- the need for spatial data representations
 - Raster: gridded space
 - Vector: point, line, polygon
 - Graph: node, edge, path
- the visual data exploration process to generate a new hypothesis
- the role of spatial interest measures in finding previous unknown spatial patterns

What is special about geo data mining? • the need for spatial data

- the need for spatial data representations
 - Raster: gridded space

First Law of Geography

"All things are related, but nearby things are more related than distant things. [Tobler, 1970]"

to generate a new hypothesis

 the role of spatial interest measures in finding interesting spatial patterns

What geo data mining techniques have been successfully applied

Some examples include

Spatial Outliers and Discontinuities

JSDM Version 0.1 A Java Based Spatial Data Mining Software

Some examples include

- Spatial Outliers and Discontinuities
- Spatial Slicing

Flow field details for a horizontal slice at the surface. (EPA)

Some examples include

- Spatial Outliers and Discontinuities
- Spatial Slicing
- Spatial clustering

Vania Bogorny and Wachowicz, M. (2008). A Framework for Context-aware Trajectory Data Mining. In: "Data Mining for Business Applications", Springer (at press).

Geo Knowledge Discovery Proces Minin Raw Target Preprocessed Transformed **Patterns** Knowledge Data Data Data Data Data Preprocessing -Pattern Recognition Interpreting Results Dimension-De-noising Classification Visualization Data Fusion Featurereduction Sampling Clustering Validation Multi-resolution extraction Normalization analysis

An iterative and interactive process

What are the scientific grand challenges to which GKD could contribute?

MOBILITY

Is the dependence on cars changing?

What are the accessibility patterns?

New Perspectives

Driving Forces

- Mobility and sensor services are merging: from macro to micro Geography.
- Knowledge about the behaviour and patterns of sensors, terminals, users, and sessions.
- A vast range of benefits but also threats. Privacy and control are the most evident examples.

Thinking outside the box...

An iterative and interactive process

A concrete example: Reasoning on Mobility Patterns

GKDD Process

The need for semantics and reasoning

- may support the user in the interpretation of trajectories and patterns as people behaviour or activity.
- may infer suspicious behaviour or tourist activity from a motion pattern.

Semantic enrichment process

Semantic Trajectory defined as sequence of Stops and Moves.

Stop is where the position of the object stays fixed

Move is the part of the trajectory where the position changes

Monument [10:30 - 12:30]

Reasoning on patterns

A tourist activity is represented by a frequent pattern that has some stops in Accomodation Places and some in Tourist Places.

The reasoning engine checks if an individual (a given frequent pattern) is an instance of a concept (tourist activity).

An axiom is a combination of logical operators that defines an implicit class

- TouristActivity
- (FpHasStop some (stop_is_at some AccomodationPlace) and FpHasStop some (stop_is_at some TouristPlace))

ATHENA

Which are the Tourist Activities?

A prototype has been built to compute inferences over pattern extracted from semantic trajectories. The reasoning engine is Oracle 11g Semantic Technologies, with a subset of OWL called OWLPRIME.

Semantic trajectories

Mined Patterns

Domain knowledge (streets

SELECT m FROM table(SEM_MATCH('(?m rdf:type :TouristActivity)',SEM_Models('modelgeopkdd'),SEM_ rulebases('owlprime'),SEM_ALIASES(SEM_ALIAS(",'http://www.owlontologies.com/GeoPKDDOnto.owl#')),null));

M

http://www.owlontologies.com/GeoPKDDOnto.owl#FrequentStop3 http://www.owlontologies.com/GeoPKDDOnto.owl#FrequentStop6

Athena: Trajectories and city

Athena: Tourist

Conclusions

- New data sources will provide a different pool of data and patterns that will require new geo data mining algorithms.
- Reasoning will support GKDD process through interactive and explanatory inference tasks.